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Many processes in the Earth, such as magma migration, can be described by the flow 
of a low-viscosity fluid in a viscously deformable, permeable matrix. The purpose of 
this and a companion paper is to develop a better physical understanding of the 
equations governing these two-phase flows. This paper presents a series of analytic 
approximate solutions to the governing equations to show that the equations 
describe two different modes of matrix deformation. Shear deformation of the matrix 
is governed by Gtokes equation and can lead to porosity-driven convection. Volume 
changes of the matrix are governed by a nonlinear dispersive wave equation for 
porosity. Porosity waves exist because the fluid flux is an increasing function of 
porosity and the matrix can expand or compact in response t o  variations in the fluid 
flux. The speed and behaviour of the waves depend on the functional relationship 
between permeability and porosity. If t h e  partial derivative of the permeability with 
respect to porosity, ak,&b, is also an increasing function of porosity, then the waves 
travel faster than the fluid in the pores and can steepen into porosity shocks. The 
propagation of porosity waves, however, is resisted by the viscous resistance of the 
matrix to volume changes. Linear analysis shows that viscous stresses cause plane 
waves to disperse and provide additional pressure gradients that deflect the flow of 
fluid around obstacles. When viscous resistance is neglected in the nonlinear 
equations, porosity shock waves form from obstructions in the fluid flux. Using the 
method of characteristics, we quantify the specific criteria for shocks to  develop in 
one and two dimensions. A companion paper uses numerical schemes to show that in 
the full equations, viscous resistance to volume changes causes simple shocks to 
disperse into trains of nonlinear solitary waves. 

1. Introduction 
Many geophysical processes can be described by the flow of a low-viscosity fluid 

through a viscously deformable, permeable matrix. Examples include the flow of 
partially molten rock through the Earth’s convecting mantle and the flow of water 
or oil in compacting sediments. These processes have always been of great interest to 
earth scientists; however, i t  is only with the derivation of a system of conservation 
equations (McKenzie 1984; Scott & Stevenson 1984, 1986) that we have begun to 
understand the fluid dynamics underlying these processes. 

These new equations are similar to  those used for traditional porous flow with the 
important distinction that the matrix is viscously deformable. Allowing the matrix 
to deform introduces interesting new behaviour. As this paper and a companion one 
(Spiegelman 1993) will stress, much of this behaviour is readily understood by noting 
that the matrix can deform in two different ways. First, because the matrix can 
expand and compact to change the volume fraction of fluid, variations in fluid flux 
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can propagate through the matrix as porosity waves. Previous work has shown that 
these equations admit solutions for finite-amplitude solitary waves of permanent 
form and constant velocity (Scott & Stevenson 1984; Richter & McKenzie 1984). 
Most of the work on the solitary waves is concerned with the existence and properties 
of these waves and principally considers problems where the background porosity is 
constant, and there is no matrix shear or mass transfer between solid and liquid. 
Under these conditions, solitary wave solutions exist in one, two and three 
dimensions (Barcilon & Richter 1986; Scott & Stevenson 1986; Barcilori & Lovera 
1989). The one-dimensional waves are not solitons (Barcilon & Richter 1986) and 
have been shown to  be unstable in two dimensions and develop into the two- 
dimensional solitary waves. The ability of the two-dimensional solitary waves to  
drive matrix convection has also been addressed (Scott 1988; Daily & Richter 1989). 
The second mode of matrix deformation is incompressible shear. When the matrix 
shear is forced, it can produce large pressure gradients that control the flow of the 
fluid in the pores (Spiegelman & McKenzie 1987; Phipps Morgan 1987; Ribe 19883). 
Alternatively, lateral variations in fluid content can cause the matrix to convect 
(Rabinowicz, Nicola & Vigneresse 1984; Scott & Stevenson 1989; Buck & Su 1989; 
Sotin & Parmentier 1989). Given the flow of fluid and matrix, additional work has 
considered the transport of heat and chemical tracers in deformable porous media 
(Brown 1988; Ribe 1985b, 1988a; Richter 1986; Richter & Daly 1989). 

The existing literature illustrates the wide range of behaviour inherent in the 
governing equations. The previous work on the solitary waves, however, is principally 
mathematical and concerned with a few special cases, while the work that includes 
incompressible matrix shear is mostly concerned with geophysical modelling of 
magma migration, particularly at mid-ocean ridges. The significance of the nonlinear 
waves in geophysical problems is not well understood and a more general physical 
understanding of these equations is still needed to put these previous results into 
context. The purpose of this study is to develop a better understanding through a 
series of analytic and numerical solutions to simple model problems. This work is 
divided into two parts. Part 1 (this paper) rewrites the governing equations into more 
tractable forms that emphasize the two distinct modes of matrix deformation. This 
paper also develops a series of useful approximations that allow analytic solution of 
the governing equations. These approximate solutions demonstrate the basic time- 
dependent behaviour of the equations for a range of geometries and initial 
conditions, and illustrate the contributions of the specific terms in the equations. 
Using the insight afforded by the approximate analytic solutions. Part 2 (Spiegelman 
1993) investigates and quantifies the behaviour of the full equations using numerical 
techniques. 

2. General equations: conservation of mass and momentum 
The equations governing the percolative flow of a low-viscosity fluid or ‘melt’ 

through a viscously deformable permeable matrix were derived independently by 
several workers (McKenzie 1984; Scott & Stevenson 1984,1986; Fowler 1985). These 
equations were originally derived for the problem of magma migration in a 
convecting mantle, and much of the nomenclature stems from this application. These 
equations however are based on the more general work of Drew (1971, 1983) for 
interpenetrating two-phase flows. Here we use the formulation from McKenzie 
(1984). His work provides a detailed derivation and explains that these equations are 
a macroscopic description of two interpenetrating viscous fluids with vastly different 
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Variable Meaning Value used Dimension 

a pore spacing (grain size) 10-3 m 
b constant in permeability 10&3000 none 

matrix bulk viscosity 10'8- 1021 Pa 8 
matrix shear viscosity 10'8 - 1021 Pa s 

f: 
T 
P melt shear viscosity 1-10 Pa s 
Pf density of melt 2800 kg m-3 
P S  density of matrix 3300 kg 111-~ 

TABLE 1. Values of parameters 

viscosities. The melt is assumed to form an interconnected porous network 
distributed over some characteristic pore (or vein) spacing a. As a continuum 
approximation, these equations are valid for lengthscales much larger than a and 
smaller than any characteristic variation in porosity. Moreover, these equations 
assume that inertial effects are negligible for both the percolating melt phase and for 
creeping matrix deformation. Estimates for magmatic systems give Reynolds 
numbers Re < lop8 for the melt, and even smaller values for the matrix as long as the 
porosity is much smaller than the critical value at which the matrix disaggregates. 
Once inertial effects become important, however, a more general set of equations for 
fluidized beds is necessary (e.g. Didwania & Homsy 1981, 1982). 

With these considerations, the equations governing conservation of mass and 
momentum can be written 

a(pf + v . (pp q5u) = r, at 

qi(v- v) = -vy, 
lu 

(3) 

where pf is the density of the melt, qi is the volume fraction occupied by the melt 
(porosity), u is the melt velocity, and Tis  the rate of mass transfer from matrix to melt 
(melting rate). ps is the density of the solid matrix, Vis  the matrix velocity, k ,  is the 
permeability, ,u is the melt viscosity and 9' = P-p,gz is the fluid pressure in excess 
of hydrostatic pressure. B is often referred to as the piezometric pressure, or 
hydraulic head. and 6 are the matrix shear and bulk viscosities respectively, and 
Ap = ps-pf ,  g is the acceleration due to gravity, x is the horizontal Cartesian 
coordinate and z the vertical. Estimates of some parameters for magmatic systems 
are given in table 1. 

Equations (1) and (2) conserve mass for the melt and matrix respectively. 
Equation (3) is conservation of momentum for the melt and governs the separation 
of melt from matrix. This equation is a modified form of Darcy's law, and the term 
$(u- V) arises from the requirement that  these equations be frame invariant to a 
Galilean transformation (Drew 1983 ; McKenzie 1984). Equation (4) governs 
momentum conservation for the matrix, which is treated as compressible, highly 
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viscous fluid. Unlike equations for more general two-phase flows, (3) and (4) contain 
only a single pressure, .Y, which is related to the fluid pressure P. This is consistent 
with the assumption that the fluid is percolating slowly and dynamic pressure 
fluct,uat,ions in the fluid phase are negligible (Drew 1983; McKenzie 1984). Scott &’ 
Stevenson (1988) define a solid pressure as --: the trace of the solid stress tensor. 
That is, P, = +rik = P - - V .  This definition is useful for showing that volume 
changes of the matrix are related to the pressure difference between the solid and 
liquid. Except for differences in definitions and notation, however, the equations 
derived by McKenzie and Scott & Stevenson are identical. 

Equation (5) gives the permeability as a nonlinear, scalart function of the pore 
spacing a ,  porosity q5, and a dimensionless coefficient, b.  Equation (5) is a convenient 
parameterization for a range of porosity/permeability relationships valid for small 
porosities ( 5  10-20%). More specific relations can be found in standard texts on 
porous flow (e.g. Ilullien 1979; Scheidegger 1974; Bear 1988). The actual functional 
form of the permeability, k,, is not particularly crucial to the following discussion 
except for the important requirements that  both E,,  and ak+/a$ be increasing 
functions of porosity. Simple capillaric models for permeability show that a power 
law with n, = 2-3 is a good approximation for permeabilities of real two-phase 
systems and satisfies this nonlinearity criterion. More detailed analysis of texturally 
equilibrated melt/solid networks gives similar results (Cheadle 1989 ; Von Bargen & 
Waff 1986). 

3. Simplified equations : constant-viscosity, constant-density, potential 
form 

Tittle progress has been made in solving (1)-(5) in their most general form. 
However, these equations can be made more tractable if we consider problems where 
the matrix viscosities are constant and the melt and matrix are taken to be 
individually incompressible (i.e. pf and ps are constant but not necessarily equal). If 
we set the matrix shear and bulk viscosities (r,<) to be constant, then (4) can be 

Equation ( 6 )  shows that the pressure gradients that drive the flow of melt arise from 
three sources : volume-preserving matrix shear, volume changes of the viscous 
matrix and the differential buoyancy between melt and matrix. For constant 
viscosities, the pressure gradients due to the two modes of matrix deformation car1 
be separated. 

By writing the matrix velocity field in potential form 

v = v x !P +vw,  (7)  
where 4P is the matrix scalar potential, we can also decompose V into incompressible 
and compressible components. It should be stressed that the ‘compressible ’ 
component of the velocity field refers to the ability of the solid framework to  expand 
or compact in response to the injection or extraction of fluid. Because the porosity 
can change, the matrix velocity can have a non-zero divergence even though the 
individual crystals that  form the framework are incompressible. It is useful to  define 
the isotropic strain rate or ‘compaction rate’ of the matrix as 

v = v * v .  (8) 
In this work, the permeability is assumed to be isotropic. More generally. a permeability tensor 

can be used with little change in notation. 
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Given these definitions and approximations, ( 1  ) -  ( 5 )  can be rewritten solely in 
terms of the porosity q5 and matrix deformation. Expanding ( 2 )  gives 

a$/a t+(vx  !P+VW).Vq5 = ( l - $ ) W + T / p , .  (9) 
Adding (1) and (2) and substituting (3) and (6) yields 

(10) 
k k AP - V .A ( y + $7) VV + % = V * 4 [qV x V2 Y - ( 1 - $) Apgk] + r-. 
P P Ps Pf 

Equations (7) and (8) imply 

and taking the curl of (6) gives 
V 2 W  = v, 

-- A‘s V x q5k. 
11 

Equations (9)-( 12) form a coupled system of hyperbolic, elliptic and bi-harmonic 
equations that can be solved using standard techniques. More importantly this 
decomposition explicitly distinguishes between t,he equations governing incom- 
pressible and compressible matrix flow and allows these equations to be solved 
sequentially. $4.3 shows that in the limit of small porosity, the t’wo modes of 
deformation are completely decoupled. Scott ( 1988) also proposes a decomposit,ion 
into a ‘circulation ’ and ‘separation’ flux ; however, these fluxes a,re just linear 
combinations of v and V and the equations do not. decompose readily. 

Equation (12) governs incompressible matrix shear and is Stokes equation for the 
creeping rotational flow of the matrix. Equations (9)-( 11) govern compressible 
matrix flow and will be shown to form a nonlinear wave eqwtion for the evolution 
of porosity and compaction rate. Equation (9) conserves porosity and stat.es that 
porosity changes are caused by mat’rix advection and by the balance between volume 
changes and melting. Equation (10) governs volume changes of the matrix. Given %, 
the compressible component of matrix flow is determined by ( 1  1). 

naturally from the decomposition used here, but has not been 
recognized before. This equation states that t,he volume changes of the matrix are 
driven by the divergence of the melt separation flux and the volume change due to 
melting, i.e. 

Equation (lo), however, has been rearranged to  stress that. it is an elliptic equation 
for the compaction rate. The right-hand side of (10) contains volume changes due to 
the divergence of the ‘forced melt flux’ and volume changes on mass transfer. The 
forced melt flux is driven principally by buoyancy forces. The left-hand side of (10) 
shows that these forcing terms change the volume (second term) and develop a 
resistive melt flux driven by pressure gradients induced by expansion and compaction 
of the viscous matrix. 

The elliptic term in (10) is perhaps the most important term in the governing 
equations. Dimensional analysis shows that viscous resistance to volume changes 
only becomes significant when the melt flux varies over the compactlion length 

Equation (10) ari 

v = - V . $ (  v - v) + TAP/(PS PA.  (13) 

s = Lk&+$q)/p]t. ( 1 4  

In  many geological problems, S is small (order 100-1000 m )  arid several authors (Ribe 
1 9 8 5 ~ ;  Ribe & Smooke 1987; Scott & Stevenson 1989) have proposed that t.he first 
term in (10) can be neglected for most geological problems. Other workers (Buck & 
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Su 1989; Sotin & Parmentier 1989) have simply neglected this term altogether. This 
zero-compaction-length approximation reduces a potentially singular second-order 
equation to a zeroth-order equation. As is typical of elliptic equations, however, this 
term controls boundary-layer flows and the existence and behaviour of solitary 
waves. Moreover, because this term causes dispersion into long trains of solitary 
waves, it can have effects that extend over many compaction lengths. This behaviour 
will be demonstrated in detail in Part 2. 

3.  I ,  Non-dimensional ization 

The compaction length is the natural lengthscale for any problem involving 
compressible matrix deformation. The natural velocity scale is the percolation 
velocity 

wo = k,APg/(q5oP), (15) 

where k ,  E k,(q5,,) = aaq5{/b (16) 
is the permeability at  the reference porosity q5 = q5,. The percolation velocity is the 
velocity of the melt relative to the matrix €or a system with uniform porosity $, and 
with no matrix deformation. 

These definitions suggest the following non-dimensionalization, where primes 
denote dimensionless variables : 

q5 = q5,#’ ,  k, = k 0 k i ,  ( x , z )  = 8(x’ ,x’ ) ,  

v = V’/6, ( v ,  v) = wn(v’, V), q? = * % f ,  s 
s /  t = - t ,  

WO 

The remainder of these papers will consider at most two-dimensional solutions to 
(9)-( 12). Substituting (17) into the two-dimensional equations and dropping primes 
yields 

aq5/at+(Vxpj+V9ZS).Vq5 = (l-$,$)%+r, 

-V-k6V%+% = V.k, 

V2W” = q5,%, (20) 

(21) 

k, = P7 (22) 

V 4 P  = - (&/O (aq5lW9 

where yP is the two-dimensional stream function and E = ~/([+h) is the ratio of the 
matrix shear viscosity to the efiective bulk viscosity. Henceforth all variables will be 
assumed to be dimensionless unless otherwise noted. 

3.2. Boundary conditions 

Boundary conditions for the matrix are the standard conditions for a single-phase, 
low-Reynolds-number compressible fluid (e.g. no-slip or free-stress boundaries). 
Boundary conditions for the melt phase (q5 and %) can be considered in terms of the 
melt separation flux 

4 = -~,[(E/q5,)(VxV2~j)+V~-~~-q50$)~l. (23) 
In general, conservation of mass requires that the normal flux across a boundary be 
continuous or balanced by a local source or sink. More specific flux boundary 
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conditions include impermeable, rigid and 'free flux ' boundaries. A t  an impermeable 
boundary the normal flux is zero for one of two reasons. Either Ic,  = 0 or VY.d.9 = 0 
where dS is the normal to  the boundary. The second condition places constraints on 
the normal derivative of the compaction rate and is required if the permeability is 
discontinuous across a boundary. As an example, this sort of boundary occurs during 
the initial compaction of a constant-porosity layer on to an impermeable base (see 
Part  2, $2). Whether an impermeable boundary remains stable in time however, 
depends on whether the components of the forced flux enter or exit the boundary. 
For example, an impermeable cap overlying a two-phase region will lead to 
disaggregation unless the impinging flux is balanced by freezing (r < 0) (Sparks & 
Parmentier 1991; Spiegelman 1990, 1991). At a rigid boundary, 9? = 0 and 
D ,  $ /Dt  = r, thus, in the absence of melting and matrix flow a rigid boundary is also 
a constant-porosity boundary. The flux at a rigid boundary need not be constant, 
however, as VW is variable. Finally a free-flux boundary has V%?.dS = 0 and yields 
no resistance to volume changes for the normal flux. Given these definitions, the 
boundary condition at the interface between a pure solid and a two-phase region 
should be no slip (continuous velocity) for the matrix and impermeable for the melt. 
I n  contrast, the interface between a two-phase region and a pure melt is free stress 
for the matrix and free flux for the melt. For conditions on the tangential melt flux 
a t  a two-phase/liquid boundary see Saffman (1971). 

4. Basic physics: simple analysis 
The following sections present analytic solutions for a series of model problems 

that have been chosen to  illustrate the basic behaviour of the governing equations. 
We first demonstrate the effects of forced incompressible matrix shear on the flow of 
melt. The second problem considers the behaviour of infinitesimal perturbations to 
constant-porosity solutions. Finally we introduce several approximations that are 
useful for demonstrating the basic time-dependent behaviour of nonlinear com- 
pressible flow. 

4.1. Incompressible two-phase $ow : constant porosity, no melting 
If the porosity is set constant and there is no mass transfer between solid and liquid, 
the governing equations reduce to  a simple form that can be solved analytically. If 
we set 4 = const. and r = 0 (18)-(22) become 

V0 = 0, = const., V4+i = 0, (24) 

and the two-phase problem reduces to solving a single biharmonic equation for the 
incompressible matrix flow. Given any solution for I&, the dimensional pressure and 
melt stream function $f are given by 

(25)  

?kf = $8 - ( k l / # " P )  [?JV2$E - ( - 4 0 )  Apgxl. (26) 

Therefore the flow of melt is completely determined by the flow of the matrix and 
gravity. These results are physically reasonable. If the individual solid and liquid 
phases are each incompressible, then fixing the porosity and having no melting 
implies that  the two-phase system must be incompresfiible. As porosity is constant, 
the matrix shear can only be driven by the boundary conditions (or other sources of 
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FIGURE 1. Melt and solid flow fields for an analytic solution for corner flow of an incompressible 
two-phase system. The two-phase region has constant porosity and no melting and is bounded on 
6he top by two rigid boundaries spreading horizontally at a constant velocity. The matrix 
streamlines are dashed lines. The melt streamlirics are solid with arrows showing the direction of 
melt t.ransport. This solution shows that non-hydrostatic pressure gradients developed by the 
forced shear of the matrix can redirect the flow of melt. The strong focusing egect shown here i s  
due to a singularity in the prefjsure associated with corner flow (Batohelor 1967). The shaded region 
is the set of all streamlines that connect the corner to  depth. This solution is discussed in detail in 
Spiegelman 8 McKenzie (1987) and forms a simple model for melt extraction at) mitl-ocean ridges. 

vorticity). The fluid in the pores, however. flows down pressure gradients due to 
buoyancy and viscous shear. If the vorticity -V2@S, is significant, the flow of melt 
can be quite different from simple vertical percolation. As an example, figure 1 shows 
melt and matrix streamlines for a corner flow solution for the matrix that 
demonstrates significant focusing of melt streamlines due to incompressible matrix 
flow. Details of the corner flow solution can be found in Spiegelman & McKenzie 
(1987). 

4.2. Eflects of non-constant porosity : linear analysis 
Relaxing the condition of constant porosity, this section uses linear analysis to  
illustrate the behaviour of infinitesimal perturbations to the constant-porosity 
solutions. This solution is useful for identifying the contribution and magnitude of 
each of the terms in the governing equations and, in particular, the elliptic term in 
(19). For clarity. we consider only perturbations to  a uniform background flux in an 
infinite domain with no matrix shear deformation or melting. This geometry has been 
used extensively in studies of the nonlinear solitary waves and is a crude 
approximation to the corner flow solutions of figure 1 far from the corner. 

Using the basic state that 4 = 1 (dimensionless), r = 0 and V, = V x $: j = W, k 
and introducing a small perturbation such that 

$6 = l+qbl, v = 0+eg1, 4 2 s  = O+e:@!S,, p = W0x+&, (27) 

the linearized two-dimensional equations to  order e: are 

- V2V1 + v1 = - [n( 1 - q50) - a$h,/az, 
Qa%; = 
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Note that the linearized equations (28)  and (29) form a coupled set of equations for 
the porosity and compaction rate only. In this approximation, the matrix velocity 
is completely determined to first order once dl and 

As these equations are invariant to a Galilean transformation, Wo can be set to zero 
without loss of generality. In this case, (28)  and (29) can be combined to form a single 
wave equation for porosity : 

are known. 

Here oo = [n(l -40)-40] (1 --&) and the second term in (33) describes the 
propagation of porosity driven by the divergence of the forced background flux. The 
third term arises from the viscous resistance of the matrix to volume changes ( - V2V1 
in (29)). If the viscous term is neglected (i.e. the matrix had no strength or 6 = 0) ,  
then all perturbations would simply propagate vertically with permanent form a t  
velocity vo. As vo is greater than the melt velocity by approximately a factor of n, 
porosity waves can (and generally do) travel faster than the melt in the pores. 

When the elliptic viscous resistance term is retained, travelling plane waves 

t )  = A ei(R.x-wt) (34) 

w = Ic,vo/(k2+ 1)  (35)  

form solutions if w satisfies the dispersion relationship 

where k2 = k.k.-f This solution has also been found from another form of the 
equations (D. McKenzie, personal communication). 

As w is real and depends on k, these solutions are dispersive. The phase velocity 
for a given wave vector k is w / k  or 

cp = vocos8/(k2+i),  (36)  

where 8 is the angle between the wave vector and the vertical. The group velocity, 
cg = V,w is 

and is plotted in figure 2. 
Equation (36) shows that the maximum phase velocity is v0. Thus viscous 

resistance to volume changes causes short-wavelength waves to propagate more 
slowly than those of longer wavelength. This is physically reasonable because it takes 
more effort to move a steep porosity gradient through a viscous medium than a more 
gradual gradient. Not surprisingly, the dispersion becomes most significant for 
wavelengths comparable to or less than the compaction length. The viscous 
compaction term also affects the speed and direction of wave packets. Figure 2 and 
(37) show that wave packets with 2kz/(Ic2+ 1)  < 1 (approximately, wavelengths 
longer than the compaction length) will travel faster than the background flux, while 
higher-frequency wave packets will move more slowly and can even move backwards 
relative to the matrix. Part 2 will show that this back-propagation of information 
can have significant effects for the nonlinear equations. Figure 2 also shows that 
wave packets inclined to the vertical ( k ,  k, =k 0) will have a horizontal component of 
motion. I n  particular, if the wave vector points to the right of vertical ( k x  k, > 0) the 
group velocity points to the left. These waves should move sideways as well as up. 

f The wave vector is denoted by R to distinguish it from the unit vector in the z-direction k. 
2 F L M  247 
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Both the dispersion of plane waves and the deflection of wave packets is caused 
solely by the elliptic compaction term. Another way to gain some insight into the 
effects of this term is to consider how it modifies the actual melt velocity. The 
perturbed melt velocity to first order is 

which is derived from (2)-(5) and the defined potentials. Given the plane wave 
solutions for #1, solutions for the other first-order variables are 

Figure 3 ( b )  shows the perturbed melt velocity a t  the crest of a plane wave. The 
melt velocity superficially resembles the group velocity (figure 2) as the deflection of 
melt from the vertical is also controlled almost entirely by the elliptic term. Figure 
3(a )  shows the components of u1 a t  the crest of a plane wave for the wave vector 
A = 2i+2k. The two largest components of the melt velocity are the flux due to 
gravity, which drives the waves vertically, and a resistive 'compaction flux' driven 
by pressure gradients induced by volume changes of the viscous matrix. The 
compaction flux is 

and i8 always normal to the wave front. The sum of the buoyancy flux arid the 
deflecting compaction flux results in a net flow at an angle to both the vertical and 
the wave vector. Again, the compaction flux only becomes significant when the melt 
flux varies over the compaction length. 
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Buoyancy- 
driven flux 

Buoyancy and compaction pressure gradients dominate the melt flow at 
wavenumbers k 2 1. However, advection by the matrix flow and pressure gradients 
due to matrix shear also contribute to the melt velocity. The magnitude of these 
terms is readily estimated using (38) and (39) and is useful for determining under 
what circumstances these processes become significant. Rotational matrix flow 
driven by horizontal porosity gradients, V x @:j, becomes important for k, += 0 and 
wavenumbers comparable to the characteristic porosity $,,. For melt extraction from 
the mantle, characteristic porosities may only be of the order of a few percent; 
therefore, rotational matrix convection will be sensitive to the longest-wavelength 
porosity variations. The previous section, however, suggests that porosity waves are 
sensitive to the shortest-wavelength porosity variations. This large difference in 
lengthscales may allow the two types of behaviour to be decoupled to a first 
approximation (see $4.3). In particular, the additional pressure gradient due to this 
incompressible flow (second term on the right-hand side of (38)) has a magnitude on 

2-2 
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the order of $o for all wave vectors. Thus shear pressure gradients induced hy 
convection are probably small, as has been suggested by Ribe & Rmooke (1987) and 
Scott (1988). When matrix deformation is driven by boundary conditions, however, 
these pressure gradients can be significant (figure 1 ; Spiegelman & McKenzie 1987). 
Finally, the compressible perturbation to the matrix velocity field, V&;, never 
exceeds - q50vo for all wave vectors and is probably negligible for small mean 
porosities. 

This linearized problem demonstrates several important features of the governing 
equations. It shows that compressible flow is described by a dispersive wave equation 
for porosity in which porosity waves can travel faster than the melt in the pores. 
These waves exist because the fluid flux is an increasing function of porosity and the 
matrix is deformable. The waves propagate because regions of excess flux can 'push' 
their way through the matrix. Viscous resistance of the matrix to volume changes, 
however, causes porosity waves to disperse and produces the additional pressure 
gradients required to deflect melt around obstacles in the melt flux. Part 2 will show 
that the effect of the elliptic compaction rate term is analogous for the full nonlinear 
equations. However, in the full equations it causes initial conditions to disperse into 
nonlinear solitary waves. Before we consider the importance of this term in the full 
equations however, it is useful to note what happens if this term is neglected in the 
nonlinear equations. 

4.3. Nonlinear equations : the xero-compaction-length approximation 
This section presents two approximations that reduce the governing equations to a 
single nonlinear wave equation for porosity that can be solved using the: method of 
characteristics. These approximate equations are useful for illustrating some of the 
gross time-dependent behaviour of the nonlinear equations for compressible flow. 

The first approximation decouples the equations governing volume changes of the 
matrix from those governing porosity-driven convection. Equations (18)-(21) 
contain a single small parameter, the characteristic porosity $ o .  If we neglect terms 
of order $o,  the governing equations become 

a$/at+ vo.v = q+r, (41) 

-V*k:$V%+9? = v . k $ [ 5 ' V 2 V , - k ] + ( A p / p , ) r ,  (42) 

v4p = 0, (43) 

where V, = V x pj. Thus, in the limit of small porosity, changes in porosity have 
negligible effect on the large-scale matrix shear. The matrix is incompressible to 
zeroth order and shear is driven by boundary conditions or additional sources of 
vorticity. Other authors have also used this ' small-porosity approximation ' and 
have shown that the effects of the $o terms are small for many problems (Barcilon 
& Richter 1986; Scott 1988). The effects of including terms of order q50 are discussed 
in more detail in Part 2. 

Given V, and r, the equations governing compressible two-phase flow reduce to 
two coupled equations for porosity and compaction rate. If we now neglect a priori 
the elliptic term in (42), these equations can be combined to form a single nonlinear 
wave equation for porosity : 

$4 + V$'  V$ = ( P , / P K  (44) 

where (45) 
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v, is the phase velocity a t  which porosity, rather than melt, is transported. 
Comparison to the melt velocity shows that except for the case where alc4/aq5 = k+/q5, 
the melt and porosity do not travel together. For a simple power-law relationship 
between permeability and porosity, k ,  = qP, the melt and porosity velocities are the 
same only if n = 1. 

Letting $(x, t) = $(x(7), t(T)),  equation (44) can be written as a coupled system of 
first-order ODES : 

q5 = ( P s / P f ) r ,  (46) 

t = l ,  (47) 

1 = V $ ,  (48) 

where 4 = d $ / d ~ .  If V,(x,t) and T(x,t) are known, (46)-(48) can be solved 
immediately, although for general V, and r solutions must be obtained numerically. 

The physical interpretation of this approximation is straightforward. By 
neglecting any resistance of the matrix to changing volume, we are effectively 
assuming that the compaction length 6 is identically zero. This can be seen by 
rescaling the equations by a finite lengthscale d and letting 6+0. The net result is to 
remove the only lengthscale in the problem. Therefore any initial condition for 
porosity simply evolves along a unique path in space and time independently of the 
porosity on neighbouring characteristics. Given a matrix flow field and a melting rate 
field, the evolution of any initial porosity distribution is completely determined. 

The utility of this approximation is that it allows rapid solution of time-dependent 
nonlinear problems with arbitrary initial conditions. This method also accommodates 
multi-dimensions, melting and matrix deformation with equal ease, and is useful for 
demonstrating much of the basic behaviour of flow in deformable porous media. This 
approximation, of course, only remains accurate for problems where the viscous 
resistance term remains negligible. For many initial conditions, the following 
sections will demonstrate that this approximation leads to the development of 
porosity shock waves. In  the vicinity of a shock wave, viscous resistance to volume 
changes cannot be negligible and the approximation breaks down. Nevertheless, 
while this approximation is not uniformally valid, it does provide a quick method for 
quantifying if, where, and when viscous resistance to volume changes becomes 
important. The following sections will briefly identify the conditions for shocks to 
form in a variety of geometries. 

4.4. Porosity shock waves one and two dimensions, no melting 

The existence of porosity shock waves is most easily demonstrated from the one- 
dimensional equations without melting. Under these conditions, (44) with 
Ic,  = q5n becomes 

$4 + 1'4 $ z  = 0, (49) 

where v+ = W, + r q P 1  

and W, = const. (4, 4 I). Equation (49) has the general solution $ = q5(z-v@t) (e.g. 
Dodd et al. 1982). Because v4 is an increasing function of 4, for n > 1 ,  porosity shocks 
will form (in an infinite medium) from any initial condition where the porosity 
decreases in the direction of flow. This result) has been pointed out for a similar set 
of equations by Toramaru (1988) and is typical of nonlinear wave equations (e.g. 
Dodd et al. 1982; Drazin & Johnson 1989). Figure 4 shows porosity profiles and 



30 M .  Xpiegelman 

1.5 

,x 1.0 .- 
v) 

8 
& 0.5 

0 
- 2  0 2 4 6 -2 0 2 4 6 

z z 
FIGURE 4. (a )  Porosity profiles and ( 6 )  characteristics to illustrate the development of shocks in one 
dimension without melting. This initial condition ( t  = 0) was chosen to produce a perfect step 
(q5max = 1, = 0.5) at t = $, z = 4 (see (I) ,  Part 2). Without viscous resistance to compaction, this 
step function travels with permanent form at a phase velocity of c, = 1.75. Note c, > 1 is greater 
than the fastest melt velocity. 

characteristics for an initial condition chosen to form a simple step-function shock 
(see (1) in Part 2). 

This example and (44) and (46) assume that the permeability is a function only of 
porosity. More generally, the permeability can depend on additional properties of the 
matrix such as a spatially varying grain size. Inclusion of these additional 
parameters adds new source terms to the right-hand sides of (44) and (46). Therefore, 
even without melting, porosity need not be constant on characteristics. Nevertheless, 
these more general equations can still be solved using characteristics to show that, 
without melting, it is the melt flux (rather than porosity) that is conserved on the 
characteristics. Thus the more general criteria for shocks to form in one dimension 
without melting are that the partial derivative of the melt flux with respect to 
porosity, aq/a$,  be an increasing function of porosity and that the melt flux decrease 
in the direction of flow. Inspection of (1) shows that constant-melt flux solutions are 
also the only steady-state solutions if there is no melting. This result implies that any 
perturbation to steady state will propagate as porosity waves. These results can be 
developed rigorously using characteristics (Spiegelman 1989). 

In two and three dimensions, the shock condition is less easy to generalize as the 
'direction of flow' is not well defined. Inspection of (45) shows that both the speed 
and direction of porosity transport depends on $ if there is incompressible matrix 
shear. Nevertheless, in two dimensions, (45) can be solved by inspection if melting is 
neglected. For r = 0 (and the condition that the permeability is solely a function of 
$), (46) requires that porosity remains constant on a characteristic. Moreover, in two 
dimensions the small-$, approximation implies that V, = V x PJ. Substituting into 
(45) and integrating shows that porosity propagates along contours of the function 

1Cr& 4 = $6 + ( a k $ d / w  (i37": + 4. (50) 

This solution can also be derived using characteristics. If $: is steady in time, then 
contours of $+ form the projection of the characteristics in the (x, 2)-plane. If is 
time dependent, then streamlines of @+ show only the instantaneous direction of 
porosity transport. Comparison to the melt stream function for incompressible two- 
phase flow ($4.1) 

(51) 

shows that porosity behaves in a similar manner to the melt but does not travel with 
the melt if the permeability is not linearly proportional to porosity. Figure 5(a)  

$f(., 4 = $: + (k$ /$ )  (CV2P + 4, 
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FIGURE 5 .  Initial conditions and porosity trajectories for the simple corner flow solution. (a )  Melt 
and porosity trajectories for the constant-porosity initial condition shown in figure 1. The left-haif 
shows the trajectories that a tracer travelling in the melt would follow. The right-half shows 
porosity trajectories (melt trajectories are dashed). These are the paths that an infinitesimal 
perturbation to constant porosity would travel on in the absence of viscous resistance to volume 
changes. Note that porosity trajectories resemble melt streamlines but in general behave as if the 
permeability were higher. When the initial condition is constant porosity, the trajectories meet 
only a t  the singularity and this initial condition is stable. ( b )  The left-half shows porosity 
trajectories for an initial porosity minimum that is $ of the constant background porosity $,,. The 
right-half shows trajectories for an initial porosity maximum that is 3q4. The excess porosity 
travels towards the corner creating shocks where the higher porosity would coincide with the 
background porosity. For the negative perturbations, shocks would form further off axis as the 
initial obstruction is transported primarily by the matrix. 

shows the trajectories of both melt and porosity for the two-phase corner flow 
solution from figure 1. The Appendix presents an analysis for the equilibrium 
transport of chemical trace elements and shows that chemical signals propagate 
along similar types of trajectories ; however, even the most# incompatible trace 
element can only travel as fast as the melt and therefore, in two (and three) 
dimensions, volume and chemistry do not travel together. 

The potential for an arbitrary two-dimensional initial condition to form shocks is 
readily assessed given the porosity trajectories in the (x, 2)-plane. As these flow lines 
are the projection of characteristics, a necessary (but not sufficient) condition for 
shocks to form is that the flow lines intersect one or more times for a given initial 
condition. If the trajectories coincide for different porosities, the problem reduces to 
the one-dimensional, no-melting problem and shocks develop from any region where 
the melt flux decreases in the direction of flow. Figure 5 ( b )  illustrates these points 
using the corner flow solution and shows porosity trajectories for a finite-amplitude 
excess in porosity and for a local porosity minimum. In  both cases, this figure 
suggests that any local perturbations to a steady-state flux will develop shocks. For 
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simplicity, this figure only shows the superposition of trajectories for the 
perturbations and the background flux, rather than the position of the actual shock 
front with time. I n  principle, the shock position can be calculated by conservation 
of mass. However, once shocks form, viscous effects become significant and unless the 
shock front is easy (or necessary) to calculate, it  is more useful to solve the full 
equations. In Part 2, the behaviour of the full equations will be compared to that of 
the zero-compaction-length approximation for some initial conditions that produce 
simple shocks. 

4.5. Consequences of melting : zero4 approximation 

Without melting, the rough rule is that shocks will form from any obstruction in the 
melt flux. This section shows that shock solutions also exist in the zero-compaction- 
length approximation when melting is included; however, the criterion for shocks to  
form changes. Adding the effects of mass transfer between solid and liquid is 
straightforward in the zero-compaction-length approximation. To produce analytic 
solutions, however, here we consider only one-dimensional problems where the 
melting rate field is assumed known and steady state (r = r(z)). Under these 
conditions, (46) and (48) form an autonomous system in 4 and z and can be combined 
to remove r such that 

Integrating once yields a relationship for the ‘differential melt flux ’ 

This flux is simply the difference between the local melt flux, q = $Wn+k4 and the 
total amount of melt produced up to the height z .  In one dimension without melting, 
the melt flux is conserved along characteristics. More generally, it  is the differential 
flux. Thus, given any initial porosity a t  position zi, it simply propagates along the 
contour qm,i = qm(&zi), i.e. contours of the function qm are projections of the 
characteristic curves in the ($, 2)-plane. Comparison to (44) in one dimension shows 
that contours of qm are just the set of all one-dimensional steady-state solutions with 
boundary condition $(xi) = $i. More physically, melt extraction balances production 
everywhere in steady state. Any initial condition for which qm is not constant must 
evolve in time. The time spent on a contour to travel from initial position zi to z is 
calculated from (47) and (48) : 

where # ( z ,  qm, i) is calculated from the inverse of (52)  given k$($) and T. t ( x ,  z,,) are the 
characteristic curves. The following sections present a few specific examples to 
demonstrate how mass transfer modifies the behaviour of shocks in the zero- 
compaction-length approximation. 

4.6. Examples : melting and shocks 

The simplest geometry in one dimension with a fixed amount of total melting is a 
single region of length d with a constant melting rate 

0, 2 < 0  

0, x < d .  
(54) 
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FIGURE 6. The evolution of porosity from a constant-melting-rate region. In  this figure, melting 
occurs at a constant rate between z/d = 0 and 1. r = 0 outside ofthis region. (a) The initial porosity 
profiles (solid curves) for gm < 0, qm = 0 and q ,  2 0, superposed on contours of ym(q5, z )  (dashed 
curves). The arrows indicate the direction of evolution. ( 6 )  Characteristic curves for the initial 
condition in (a )  with ym < 0. This initial condition grows to steady state but develops shocks 
immediately above the melting zone. (c )  y, = 0 is the steady-state solution. (d)  q,,, 0, 
characteristics diverge with time resulting in smooth evolution to steady state. Inspection of (a)  
shows that all local perturbations about steady state propagate as nonlinear waves and produce 
shocks. 
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FIGURE 7 .  The effect of melting (and freezing) on shocks. The dotted curves show porosity 
trajectories ($,,,,,, and $,,,) with and without melting included. The solid curves show the position 
of the porosity shock a t  times t = 0-40. In  the constant-melting-rate field (r = r, for 0 < z < SO), 
porosity increases on both trajectories and the spacing between trajectories decreases. Thus 
melting causes shocks to speed up but decrease in amplitude. Nevertheless because the transport 
velocity is always greater for larger values of qm, once a shock forms, it always remains a shock. 
For z > 50 (r = 0) trajectories are again parallel but a t  a higher porosity with a smaller jump in 
porosity. Note if the arrows are reversed ( z  + - z ,  r+ - r )  this figure shows the effect of freezing 
on a small-amplitude shock. 

Figure 6 (a )  shows the contours of qm(q5, z )  for this geometry and shows three initial 
conditions for porosity superposed on these contours. To evaluate the evolution of 
any given initial condition, just follow the porosity trajectories along which it 
propagates. For the curve marked qm < 0, porosity will increase rapidly in the 
melting zone, but not above, producing a shock in the region immediately above the 
melting zone (figure 6 b  shows the characteristics for this initial condition). The initial 
condition with qm = 0 is in steady state and no shocks form, although any local 
perturbation to this steady state, will generate at least transient shocks in the zero- 
6 approximation. Finally, the curve marked qm > 0 has the differential flux 
everywhere increasing in the direction of flow, which simply relaxes to steady state 
without producing shocks. 

These results imply that the inclusion of mass transfer changes the criteria for 
shocks t o  form but does not rule out the existence of shocks. Figure 6 shows that 
melting can actually enhance the development of shocks. For the initial condition 
where qm < 0, shocks form from an initial condition where the flux q always increases 
in the direction of flow. In the absence of melting, no shocks would develop from this 
profile. For this particular initial condition and melting-rate function, the shock 
forms in the region where r = 0;  however, it is straightforward to choose simple 
melting functions where locally the melt production exceeds extraction and shocks 
form even in the presence of melting. Spiegelman (1989) presents several examples. 

For a shock in a melting region, the effects of mass transfer on the behaviour of the 
shock is evident from the porosity trajectories. Figure 7 shows the evolution of a 
step-function shock as i t  passes through a constant-melting-rate zone. As the 
transport velocity is always greater for larger values of qm, once a shock forms, it 
must remain a shock. The principal consequences of melting are to increase the 
minimum porosity (and therefore the shock speed), while decreasing the difference 
between the maximum and minimum porosity. Thus shocks will tend to form more 
rapidly in melting regions, but be of smaller amplitude. Freezing will have precisely 
the opposite effect and cause small-amplitude shocks to slow down while growing in 
amplitude. This geometry is used in detail in Part 2 and is useful when we consider 
the effect of melting and freezing on the behaviour of solitary waves. 
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5. Discussion 
The purpose of the simple analysis presented here is to demonstrate some of the 

basic physics of the equations governing flow in deformable permeable media. 
Rewriting the equations in potential form makes the structure of these equations 
clearer by distinguishing between compressible and incompressible matrix de- 
formation. It should be stressed that both the solid and liquid phases are each 
individually incompressible to a first approximation ; however, the volume fraction 
of solid and liquid can change. Incompressible matrix flow is governed by Stokes 
equations for porosity-driven convection while compressible matrix deformation is 
governed by a nonlinear wave equation for the evolution of porosity. As suggested 
by the linear analysis, these two modes of deformation act on very different 
lengthscales. Porosity-driven convection is sensitive to long-wavelength porosity 
variations and boundary conditions, whereas the porosity waves are sensitive to the 
compaction length. 

Porosity waves are a fundamental feature of these equations. These waves 
propagate because variations in the melt flux force the matrix to change volume. As 
long as the flux is an increasing function of porosity and the matrix is deformable, 
then porosity waves will exist. The actual speed and behaviour of the porosity waves 
depends on the relationship between permeability and porosity. In the absence of 
any viscous resistance of the matrix to compaction, porosity waveforms are 
transported by the effective phase velocity, u# cc ak,/aq5 which arises from the matrix 
velocity and the divergence of the forced flux. If ak,/a+ is also an increasing function 
of porosity, variations in melt flux will propagate as nonlinear waves and can steepen 
into shocks. For most commonly used permeability-porosity relationships, non- 
linear waves are expected. In this case porosity variations do not travel with or 
transport melt, and generally travel faster and in different directions than any 
geochemical signal. For the full equations, several authors (Scott & Stevenson 1986 ; 
Scott 1988; Richter & Daly 1989) have shown that the solitary waves also travel 
faster than the melt in the pores (see also Part 2, Appendix B). 

Without any resistive term in the equations, the nonlinearity of the melt flux with 
porosity can cause even smooth initial conditions to develop travelling discontinuities 
in flux. The zero-compaction-length approximation shows that porosity shocks will 
form from any local obstruction in the flux or from regions where melt is produced 
faster than it can be extracted. As these conditions are readily achieved for many 
geophysical problems, at  least transient shocks are expected during melt extraction 
or in other deformable two-phase systems. For any given geometry and initial 
condition, the location, timing and amplitude of shocks can be calculated using 
characteristics and this analysis is readily extended to time-dependent problems, 
three-dimensions, and more complex melting/deforming systems. 

It should be stressed that true ‘shocks’, actual discontinuities in porosity, would 
form only if the compaction length were identically zero (i.e. the matrix had no 
strength at  all). For a small, but non-zero, compaction length, viscous resistance to 
volume changes cannot be negligible in a region of rapidly changing flux. If viscous 
resistance only modified the porosity structure near the shock (much like thermal 
diffusion modifies shocks in gas dynamics), then the zero-compaction-length 
approximation would be valid except within a few compaction lengths of the shock. 
However, linear analysis has already shown that viscous resistance causes plane 
waves to disperse. Using numerical techniques, Part 2 shows that the elliptic term 
causes dispersion into solitary waves in the full nonlinear equations. Because of this 
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dispersion, solutions to the full equations can differ significantly from the simple 
shock solutions. Thus the elliptic compaction term must be maintained to accurately 
describe the evolution of porosity. While the zero-compaction-length approximation 
is not uniformally accurate, it  does rapidly quantify where viscous effects become 
important. By comparing the behaviour of the approximate and full equations for 
identical initial conditions, Part 2 will illustrate clearly how viscous effects modify 
the prediction of shocks. 

Appendix. Behaviour of chemical tracers in viscous two-phase flows 
Section 4.3 showed that the porosity and the melt do not travel together if the 

permeability is a nonlinear function of porosity. If ak,/a5J is also an increasing 
function of porosity then porosity waves travel faster than the melt. This appendix 
shows that chemical tracers travel at most as fast as the melt and, therefore, signals 
in volume and chemical concentration do not travel together. 

Neglecting chemical diffusion, the conservation of mass for an inert trace element 
that maintains chemical equilibrium between the solid and liquid phase is governed 
by 

( a m  LPn 5J + P A 1  -#)Dl cf + v .  [Pf 5JV+P,(1 - #)D Vlcf = 0, (A 1) 
where D is the partition coefficient that relates the concentration in the solid cs to the 
concentration in the fluid cf. For trace elements we assume cs = Dcf. Setting D to be 
constant and using (1)-(3), (A 1) can be rewritten as 

where 

and D‘ = p,( 1 - 5J)D/(pf 5 J )  is the effective partition coefficient which is principally 
the ratio of D t o  the porosity. Equation (A 2) is a linear transport equation that can 
be solved using characteristics to show that any particle of tracer is simply 
transported by the effective velocity, ueff. If D’ = 0 then ueff = u and the tracer 
travels with the melt. As D’ -+GO, ueff -+ V and all of the tracer travels with the solid. 
In general, tracers with different partition coefficients travel along different 
characteristics; however, no tracer can travel faster than the melt. As shown earlier, 
for most reasonable forms of the permeability, porosity always travels faster and in 
different directions than the melt. 
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